- Blog Categories
- Project Management
- Agile Management
- IT Service Management
- Cloud Computing
- Business Management
- Business Intelligence
- Quality Engineer
- Cyber Security
- Career
- Big Data
- Programming
- Most Popular Blogs
- PMP Exam Schedule for 2024: Check PMP Exam Date
- Top 60+ PMP Exam Questions and Answers for 2024
- PMP Cheat Sheet and PMP Formulas To Use in 2024
- What is PMP Process? A Complete List of 49 Processes of PMP
- Top 15+ Project Management Case Studies with Examples 2024
- Top Picks by Authors
- Top 170 Project Management Research Topics
- What is Effective Communication: Definition
- How to Create a Project Plan in Excel in 2024?
- PMP Certification Exam Eligibility in 2024 [A Complete Checklist]
- PMP Certification Fees - All Aspects of PMP Certification Fee
- Most Popular Blogs
- CSM vs PSM: Which Certification to Choose in 2024?
- How Much Does Scrum Master Certification Cost in 2024?
- CSPO vs PSPO Certification: What to Choose in 2024?
- 8 Best Scrum Master Certifications to Pursue in 2024
- Safe Agilist Exam: A Complete Study Guide 2024
- Top Picks by Authors
- SAFe vs Agile: Difference Between Scaled Agile and Agile
- Top 21 Scrum Best Practices for Efficient Agile Workflow
- 30 User Story Examples and Templates to Use in 2024
- State of Agile: Things You Need to Know
- Top 24 Career Benefits of a Certifed Scrum Master
- Most Popular Blogs
- ITIL Certification Cost in 2024 [Exam Fee & Other Expenses]
- Top 17 Required Skills for System Administrator in 2024
- How Effective Is Itil Certification for a Job Switch?
- IT Service Management (ITSM) Role and Responsibilities
- Top 25 Service Based Companies in India in 2024
- Top Picks by Authors
- What is Escalation Matrix & How Does It Work? [Types, Process]
- ITIL Service Operation: Phases, Functions, Best Practices
- 10 Best Facility Management Software in 2024
- What is Service Request Management in ITIL? Example, Steps, Tips
- An Introduction To ITIL® Exam
- Most Popular Blogs
- A Complete AWS Cheat Sheet: Important Topics Covered
- Top AWS Solution Architect Projects in 2024
- 15 Best Azure Certifications 2024: Which one to Choose?
- Top 22 Cloud Computing Project Ideas in 2024 [Source Code]
- How to Become an Azure Data Engineer? 2024 Roadmap
- Top Picks by Authors
- Top 40 IoT Project Ideas and Topics in 2024 [Source Code]
- The Future of AWS: Top Trends & Predictions in 2024
- AWS Solutions Architect vs AWS Developer [Key Differences]
- Top 20 Azure Data Engineering Projects in 2024 [Source Code]
- 25 Best Cloud Computing Tools in 2024
- Most Popular Blogs
- Company Analysis Report: Examples, Templates, Components
- 400 Trending Business Management Research Topics
- Business Analysis Body of Knowledge (BABOK): Guide
- ECBA Certification: Is it Worth it?
- How to Become Business Analyst in 2024? Step-by-Step
- Top Picks by Authors
- Top 20 Business Analytics Project in 2024 [With Source Code]
- ECBA Certification Cost Across Countries
- Top 9 Free Business Requirements Document (BRD) Templates
- Business Analyst Job Description in 2024 [Key Responsibility]
- Business Analysis Framework: Elements, Process, Techniques
- Most Popular Blogs
- Best Career options after BA [2024]
- Top Career Options after BCom to Know in 2024
- Top 10 Power Bi Books of 2024 [Beginners to Experienced]
- Power BI Skills in Demand: How to Stand Out in the Job Market
- Top 15 Power BI Project Ideas
- Top Picks by Authors
- 10 Limitations of Power BI: You Must Know in 2024
- Top 45 Career Options After BBA in 2024 [With Salary]
- Top Power BI Dashboard Templates of 2024
- What is Power BI Used For - Practical Applications Of Power BI
- SSRS Vs Power BI - What are the Key Differences?
- Most Popular Blogs
- Data Collection Plan For Six Sigma: How to Create One?
- Quality Engineer Resume for 2024 [Examples + Tips]
- 20 Best Quality Management Certifications That Pay Well in 2024
- Six Sigma in Operations Management [A Brief Introduction]
- Top Picks by Authors
- Six Sigma Green Belt vs PMP: What's the Difference
- Quality Management: Definition, Importance, Components
- Adding Green Belt Certifications to Your Resume
- Six Sigma Green Belt in Healthcare: Concepts, Benefits and Examples
- Most Popular Blogs
- Latest CISSP Exam Dumps of 2024 [Free CISSP Dumps]
- CISSP vs Security+ Certifications: Which is Best in 2024?
- Best CISSP Study Guides for 2024 + CISSP Study Plan
- How to Become an Ethical Hacker in 2024?
- Top Picks by Authors
- CISSP vs Master's Degree: Which One to Choose in 2024?
- CISSP Endorsement Process: Requirements & Example
- OSCP vs CISSP | Top Cybersecurity Certifications
- How to Pass the CISSP Exam on Your 1st Attempt in 2024?
- Most Popular Blogs
- Best Career options after BA [2024]
- Top Picks by Authors
- Top Career Options & Courses After 12th Commerce in 2024
- Recommended Blogs
- 30 Best Answers for Your 'Reason for Job Change' in 2024
- Recommended Blogs
- Time Management Skills: How it Affects your Career
- Most Popular Blogs
- Top 28 Big Data Companies to Know in 2024
- Top Picks by Authors
- Top Big Data Tools You Need to Know in 2024
- Most Popular Blogs
- Web Development Using PHP And MySQL
- Top Picks by Authors
- Top 30 Software Engineering Projects in 2024 [Source Code]
- More
- Agile & PMP Practice Tests
- Agile Testing
- Agile Scrum Practice Exam
- CAPM Practice Test
- PRINCE2 Foundation Exam
- PMP Practice Exam
- Cloud Related Practice Test
- Azure Infrastructure Solutions
- AWS Solutions Architect
- AWS Developer Associate
- IT Related Pratice Test
- ITIL Practice Test
- Devops Practice Test
- TOGAF® Practice Test
- Other Practice Test
- Oracle Primavera P6 V8
- MS Project Practice Test
- Project Management & Agile
- Project Management Interview Questions
- Release Train Engineer Interview Questions
- Agile Coach Interview Questions
- Scrum Interview Questions
- IT Project Manager Interview Questions
- Cloud & Data
- Azure Databricks Interview Questions
- AWS architect Interview Questions
- Cloud Computing Interview Questions
- AWS Interview Questions
- Kubernetes Interview Questions
- Web Development
- CSS3 Free Course with Certificates
- Basics of Spring Core and MVC
- Javascript Free Course with Certificate
- React Free Course with Certificate
- Node JS Free Certification Course
- Data Science
- Python Machine Learning Course
- Python for Data Science Free Course
- NLP Free Course with Certificate
- Data Analysis Using SQL
What is Kubernetes Architecture? Concepts, Best Practices
Updated on 07 October, 2022
8.45K+ views
• 17 min read
Table of Contents
Kubernetes, generally abbreviated as K8s, is an open-source orchestration tool developed by Google for managing containerized applications in different environments. In this article, you will learn about Kubernetes architecture, its different components, and concepts. If you’re interested in becoming a Certified Kubernetes Administrator, you can enroll in our Kubernetes Course where you will gain full knowledge of Kubernetes to automate deployment, scaling, and managing applications.
If you’re familiar with Docker, you might have heard about Docker Swarm, an orchestration tool provided by Docker. But, almost 88% of the organizations choose Kubernetes over Docker Swarm. If you want to learn Kubernetes and Docker, you can enroll in our Docker and Kubernetes Certification, where you will learn to build, test and deploy Docker applications with Kubernetes. But why do you even need Kubernetes? When you deploy your containerized applications in a production environment, you will need to manage many containers. If any container goes down, you would require another container to restart immediately to ensure almost zero downtime for your application. But are you going to do it manually? Obviously not! Kubernetes takes care of all the automation of deployments, scaling, and management of the application.
What is Kubernetes Architecture?
Kubernetes Architecture, in general, follows a client-server architecture. A node is a machine, physical or virtual, on which Kubernetes is installed. It is a worker machine where the containers are launched by Kubernetes. But what if the node on which your application was running fails? The application will go down. So, you need to have more than one node. A cluster is a set of nodes grouped together. So, even if one node crashes, your application is still accessible from the other nodes. Having more than one node helps in sharing the load as well. Now, you need something to manage and monitor your cluster. That’s where the control plane, or the master node, comes in. It is another node with Kubernetes installed and configured as a master. The master node watches over the worker nodes in the cluster and is responsible for the actual orchestration of the containers on the worker nodes. Thus, in short, a Kubernetes cluster consists of at least one worker node that runs pods and a control plane that manages the worker nodes.
Kubernetes Concepts
Before you jump into the different components of Kubernetes, you should be aware of the different terminologies you will come across later.
- Pods: These are the smallest deployable units in Kubernetes. A pod encapsulates one or more closely related containers that can be treated as a single application. Although you can put more than one container in a pod, it is a good practice to house one container per pod. Each time a pod is created, it is assigned a new IP address.
- Deployment: Kubernetes deployment helps you achieve the desired state of a cluster in a declarative way. You just need to specify the desired state in a YAML file. Then the Deployment controller gradually updates the current state to the desired state by creating or destroying pods as required.
- Services: Pods are ephemeral in nature, i.e., they don’t last long. They are created and destroyed to match the desired state of the cluster. Now, there are conditions such as Deployments, where the set of pods running at one instance of time is different from the set of pods running at another instance of time. So, if some pods depend on other pods, it would be difficult for them to keep track of the IP addresses. That’s where Kubernetes Services jump in. Service defines a logical set of pods and a policy to access them. Now, you need not manage the IP addresses, because the Service can take care of that.
- Volume: Kubernetes supports many types of volumes, including ephemeral and persistent. Ephemeral volumes exist only till the pod exists, whereas persistent volumes store the data beyond the lifetime of the pods. A pod can use any number of volume types at a time.
- Namespaces: Namespaces in Kubernetes offer a way to isolate groups of resources within a single cluster. They are designed to be used in settings where numerous users are dispersed across different teams or projects.
- ConfigMaps: ConfigMaps are APIs that hold configuration information in key-value pairs. Their main job is to keep the container image and configuration apart. It can represent either the complete configuration file or specific properties. You should keep the configuration options distinct from the application code in Kubernetes to keep the image small and portable. ConfigMaps allow you to configure pods differently depending on the environment in which they are executing.
- Secrets: Kubernetes Secrets is an object used to store private information like usernames, passwords, tokens, and keys. When users want to keep confidential information and make it accessible to a pod, they can create secrets either through the system during the installation of an app or by themselves. Passwords, tokens, or keys might be unintentionally disclosed during Kubernetes operations if they were merely included in a pod specification or container image. Therefore, the secret's primary purpose is to keep the information it contains from being accidentally discovered while still keeping it accessible to the user wherever they are.
- ReplicaSets: ReplicaSets is one of the Kubernetes controllers that help you ensure the specified number of pod replicas are running.
Kubernetes Components
As discussed earlier, a Kubernetes cluster consists of two main components - Control Plane and Worker Nodes. Now, these components themselves consist of different components.
The image below depicts the different components of a Kubernetes cluster.
Now, let us discuss these components in detail.
Control Plane Components
The control plane is responsible for managing the cluster’s state. It is the control plane that makes important decisions about the cluster and responds to the cluster events, such as starting a new pod when required.
The major components that comprise the control plane are - the API server, the scheduler, the controller manager, the etcd, and an optional cloud controller manager.
- APIserver: It is the frontend of the control plane and exposes the Kubernetes API. It validates all the internal and external requests and processes them. When you use the kubectl command-line interface, you basically interact with the kube-APIserver through REST calls. kube-APIserver scales horizontally by deploying more instances.
- etcd: The etcd is a consistent distributed key-value data store and the single source of truth about the status of the cluster. It is fault-tolerant and holds the configuration data and information about the state of the cluster.
- scheduler: It is the responsibility of the kube-scheduler to schedule the pods on the different nodes considering the resource utilization and availability. It makes sure that none of the nodes in the cluster is overloaded. The scheduler knows the total resources available and thus schedules the pods on the best fit node.
- controller-manager: The controller-manager is a group of all the controller processes that keep running in the background to control and manage the state of the cluster. It is the controller-manager that makes the changes in the cluster to make sure the current state matches the desired state.
- cloud-controller-manager: In a cloud environment, it is the cloud-controller-manager that helps you link your cluster with the cloud providers’ API. In a local setup where you install minikube, you don’t have a cloud-controller-manager.
There are different kinds of controllers that help you to configure behavior on your Kubernetes cluster.
- ReplicaSet: A ReplicaSet makes sure that a certain number of Pods are active at all times. If some extra Pods are running than the specified requirement, they will be deleted and vice-versa.
- Deployment: Running a Pod with the desired number of replicas requires a deployment controller. There is nothing special about these Pods. The settings over a standalone Pod and a ReplicaSet, such as a deployment strategy to utilize, can be specified by the deployment.
- DaemonSet: A DaemonSet makes sure that a copy of a Pod is running on all or some of the cluster's nodes. For the task of delivering one Pod per node, it is the appropriate controller. You only have one Pod scheduled on each node once you submit the DaemonSet spec (or manifest file) to the API server. One Pod is also deployed for each subset of nodes using daemon sets.
- StatefulSet: The management of stateless apps is appropriate for deployment controllers. On the other hand, StatefulSets help execute workloads that need persistent storage. When Pods need to be rescheduled, they use the same identity while maintaining separate identities for each Pod they oversee.
- Job: A Kubernetes Job is a controller that keeps an eye on Pods while they perform specific activities. The majority of their applications are batch processing. The Pod will launch and carry out a task as soon as you upload a Job manifest file to the API server. It will automatically stop down after the task is finished. Consequently, this is known as a Run-to-completion Job. These Pods must be manually deleted; Kubernetes will not do it for you.
- CronJob: The Job controller and a CronJob controller are very similar. The primary distinction is that it operates according to a user-defined timetable. The CronJob controller will oversee the automated creation of a Job depending on the schedule after the schedule is specified using cron syntax. You may also define how many Jobs should run simultaneously and how many successful and unsuccessful Jobs should be kept around for logging and debugging.
Node Components
The worker nodes comprise three important components - the kubelet, the kube-proxy and the container runtime such as Docker.
- kubelet: The kubelet runs on each node to make sure that the containers are running in the pods and are healthy. A set of PodSpecs are provided to the kubelet through various techniques in order to ensure that pods running as per the PodSpecs.
- kube-proxy: Each worker node has a proxy service called kube-proxy that manages individual host subnetting and makes services available to the outside world. It performs request forwarding across the multiple isolated networks in a cluster to the appropriate pods/containers.
- container-runtime: The container runtime is the software responsible for running the containers. Kubernetes supports Open Container Initiative-compliant runtimes such as Docker, CRI-O, and containerd.
Addons
To implement cluster features, addons utilize Kubernetes resources (such as DaemonSet, Deployment, etc.). Namespaced resources for addons should be located in the kube-system namespace because they enable cluster-level functionalities. These addons extend the functionality of Kubernetes.
Many addons are available in Kubernetes. A few of them have been discussed below:
- DNS: All the clusters should have Cluster DNS. Cluster DNS is a DNS server that provides DNS records for Kubernetes services. This DNS server is automatically incorporated into DNS searches for containers launched by Kubernetes.
- Web UI (Dashboard): Dashboard is a multi-purpose, web UI for Kubernetes clusters. It enables users to control and debug both the cluster itself and any running applications.
- Container Resource Monitoring: Container Resource Monitoring offers a UI for exploring general time-series metrics about containers recorded in a central database.
- Ingress Controllers: For Kubernetes (and other containerized) settings, an Ingress controller is a specialized load balancer. It accepts traffic coming from outside the Kubernetes platform and distributes it to pods (containers) running on the platform. For services that must communicate with other services outside of a cluster, it can control egress traffic within a cluster. Additionally, it keeps track of running Kubernetes pods and automatically updates the load-balancing rules whenever a pod is added or removed from service.
Additional Kubernetes Web Application Architecture Components
Kubernetes can manage the associated application data to a cluster in addition to managing the containers for an application. Users of Kubernetes can ask for storage resources without being familiar with the specifics of the storage infrastructure.
An accessible directory for a pod, which might include data, is really what a Kubernetes volume is. The volume type determines the volume's contents, creation, and medium on which it was stored. Persistent volumes (PVs) are tied to an existing storage resource and are specific to a cluster. They are typically provisioned by an administrator. Therefore, PVs can outlast a particular pod.
Kubernetes uses container images stored in a container registry. It can be a third-party registry or managed by your organization.
A physical cluster contains virtual clusters called namespaces. They are designed to give numerous users and teams virtually independent work environments and stop teams from hampering one another by restricting access to certain Kubernetes objects.
At the pod level, Kubernetes containers within a pod can share IP addresses and network namespaces, and they can access other ports via localhost.
Kubernetes Design Principles
Scalability, high availability, security, and portability are some characteristics that Kubernetes was created to serve.
- Scalability: Based on CPU usage, Kubernetes provides horizontal scaling of pods. The CPU utilization threshold can be configured, and if it is achieved, Kubernetes will launch new pods on its own. For instance, if the application is actively expanding up to 170 percent, the CPU threshold is set at 60 percent. Eventually, 3 more pods will be deployed to bring the average CPU utilization back down to 60 percent. Kubernetes offers the potential for load balancing across several pods for a specific application. Through Stateful sets, Kubernetes also supports horizontal scaling of stateful pods, including NoSQL and RDBMS databases. Similar to deployment, a stateful set guarantees durable and reliable storage even when a pod is eliminated.
- High Availability: At both the application and infrastructure levels, Kubernetes addresses high availability. Replica sets ensure that the desired (minimum) number of stateless pod replicas are active for a particular application. Stateful pods play the same function as stateful sets. Kubernetes supports several distributed storage backends at the infrastructure level, including AWS EBS, Azure Disk, Google Persistent Disk, NFS, and others. Stateful workloads have high availability because of Kubernetes' addition of a dependable, accessible storage layer. Additionally, to increase availability, each master component can be set up for multi-node replication (multi-master).
- Security: Security is addressed by Kubernetes on several levels, including cluster, application, and network. Transport layer security is used to protect the API endpoints (TLS). Operations on the cluster can only be carried out by authenticated users (either service accounts or regular users) (via API requests). At the application level, each cluster's Kubernetes secrets can hold sensitive data (such as tokens or passwords). It should be noted that secrets are reachable from any pod within the same cluster. In a deployment, network policies for pod access can be set. A network policy outlines the channels for communication between pods and other network endpoints.
- Portability: The portability of Kubernetes can be seen in its support for various operating systems (a cluster can run on any common Linux distribution), processor architectures (bare metal or virtual machines), cloud providers (AWS, Azure, or Google Cloud Platform), and additional container runtimes beyond Docker. It can also handle workloads across hybrid (private and public cloud) or multi-cloud settings due to the idea of a federation. Additionally, it offers fault tolerance between availability zones for a single cloud provider.
Configuring Kubernetes Architecture Security
There are various best practices to adhere to in order to secure Kubernetes clusters, nodes, and containers:
- Update Kubernetes with the most recent version. Security updates for recently discovered vulnerabilities are only supported for the most recent three Kubernetes versions.
- Securely configure the Kubernetes API server. Encrypt connections between the API server and kubelets using TLS and disable anonymous/unauthenticated access.
- The etcd should be secured. Although trusted by itself, client connections are only served through TLS.
- Switch off the kubelet's anonymous access feature. Start the kubelet with the anonymous-auth=false flag and use the NodeRestriction admission controller to restrict what the kubelet can access.
- Utilize Kubernetes-native security controls to lower operational risk. To prevent conflicts between your own security controls and the orchestrator, whenever possible, use native Kubernetes controls to implement security standards.
Kubernetes Architecture Best Practices
Here are some best practices you can implement for your Kubernetes architecture:
- Kubernetes keep rolling out updates that include platform upgrades, new features, and bug fixes. So, you must always update your Kubernetes with the latest release.
- By now, you know about Kubernetes namespaces. When multiple teams are working on a large Kubernetes cluster, you would be required to organize it and keep it secured. That’s where you should use Kubernetes namespaces.
- You should keep your Kubernetes cluster and architecture secure by following the above points. You should consider using role-based access control(RBAC) that helps you define what one can do in a Kubernetes cluster. In addition to that, there are some other third-party tools such as Kube-hunter or Kube-bench that can be helpful.
- You should be careful while choosing base images. If possible, consider using smaller Docker images that are easier to pull and reduce the chances of security issues. You can use Alpine images that are almost 10 times smaller than the base images.
- You should define resource requests and limits to avoid your pods from consuming more CPU or memory. Resource requests is the bare minimum of resources that a container may utilize. Resource limits means the maximum resources that a container may utilize.
Conclusion
In this article, you learned that Kubernetes is an open-source orchestration tool for managing containerized applications. You also learned about the complex client-server architecture of Kubernetes. The master node or the control plane is composed of four components namely, the API server, the scheduler, the controller manager, the etcd, and an optional cloud controller manager. However, the worker node consists of three components that are the kubelet, the kube-proxy and the container runtime. You also, by now, know about the design principles and some of the best practices to follow while working with Kubernetes.
Kubernetes is a vast topic that cannot be covered in a single article. If you want to learn more about Kubernetes and enter the world of DevOps, you can enroll in our Devops Tools Courses.
Frequently Asked Questions (FAQs)
1. What are the concepts in Kubernetes?
While learning Kubernetes, you will come across various new terminologies such as Pods, Services, Namespaces, Deployments, etc. These are the building blocks of Kubernetes and you can consider them as the concepts of Kubernetes.
2. What are the main components of Kubernetes architecture?
There are two main components of Kubernetes architecture - the master node or the control plane and the worker node. The master node is composed of four components namely, the API server, the scheduler, the controller manager, the etcd, and an optional cloud controller manager. The worker node consists of three components that are the kubelet, the kube-proxy and the container runtime.
3. What is the fastest way to learn Kubernetes?
The first thing you should do is to get your basics clear. You can start with Kubernetes and its architecture. In between, you’ll come across different terminologies that you must learn without skipping because these are the building blocks. In addition to that, you should start doing hands-on practice with kubectl. This way, you can learn not only the theory, but also how to apply them.
4. What skills are needed for Kubernetes?
The few requirements, in terms of skills, needed for learning Kubernetes are Linux Basics and Commands and some familiarity with container runtime technologies such as Docker.