
Domains
Agile Management
Master Agile methodologies for efficient and timely project delivery.
View All Agile Management Coursesicon-refresh-cwCertifications
Scrum Alliance
16 Hours
Best Seller
Certified ScrumMaster (CSM) CertificationScrum Alliance
16 Hours
Best Seller
Certified Scrum Product Owner (CSPO) CertificationScaled Agile
16 Hours
Trending
Leading SAFe 6.0 CertificationScrum.org
16 Hours
Professional Scrum Master (PSM) CertificationScaled Agile
16 Hours
SAFe 6.0 Scrum Master (SSM) CertificationAdvanced Certifications
Scaled Agile, Inc.
32 Hours
Recommended
Implementing SAFe 6.0 (SPC) CertificationScaled Agile, Inc.
24 Hours
SAFe 6.0 Release Train Engineer (RTE) CertificationScaled Agile, Inc.
16 Hours
Trending
SAFe® 6.0 Product Owner/Product Manager (POPM)IC Agile
24 Hours
ICP Agile Certified Coaching (ICP-ACC)Scrum.org
16 Hours
Professional Scrum Product Owner I (PSPO I) TrainingMasters
32 Hours
Trending
Agile Management Master's Program32 Hours
Agile Excellence Master's ProgramOn-Demand Courses
Agile and ScrumRoles
Scrum MasterTech Courses and Bootcamps
Full Stack Developer BootcampAccreditation Bodies
Scrum AllianceTop Resources
Scrum TutorialProject Management
Gain expert skills to lead projects to success and timely completion.
View All Project Management Coursesicon-standCertifications
PMI
36 Hours
Best Seller
Project Management Professional (PMP) CertificationAxelos
32 Hours
PRINCE2 Foundation & Practitioner CertificationAxelos
16 Hours
PRINCE2 Foundation CertificationAxelos
16 Hours
PRINCE2 Practitioner CertificationSkills
Change ManagementMasters
Job Oriented
45 Hours
Trending
Project Management Master's ProgramUniversity Programs
45 Hours
Trending
Project Management Master's ProgramOn-Demand Courses
PRINCE2 Practitioner CourseRoles
Project ManagerAccreditation Bodies
PMITop Resources
Theories of MotivationCloud Computing
Learn to harness the cloud to deliver computing resources efficiently.
View All Cloud Computing Coursesicon-cloud-snowingCertifications
AWS
32 Hours
Best Seller
AWS Certified Solutions Architect - AssociateAWS
32 Hours
AWS Cloud Practitioner CertificationAWS
24 Hours
AWS DevOps CertificationMicrosoft
16 Hours
Azure Fundamentals CertificationMicrosoft
24 Hours
Best Seller
Azure Administrator CertificationMicrosoft
45 Hours
Recommended
Azure Data Engineer CertificationMicrosoft
32 Hours
Azure Solution Architect CertificationMicrosoft
40 Hours
Azure DevOps CertificationAWS
24 Hours
Systems Operations on AWS Certification TrainingAWS
24 Hours
Developing on AWSMasters
Job Oriented
48 Hours
New
AWS Cloud Architect Masters ProgramBootcamps
Career Kickstarter
100 Hours
Trending
Cloud Engineer BootcampRoles
Cloud EngineerOn-Demand Courses
AWS Certified Developer Associate - Complete GuideAuthorized Partners of
AWSTop Resources
Scrum TutorialIT Service Management
Understand how to plan, design, and optimize IT services efficiently.
View All DevOps Coursesicon-git-commitCertifications
Axelos
16 Hours
Best Seller
ITIL 4 Foundation CertificationAxelos
16 Hours
ITIL Practitioner CertificationPeopleCert
16 Hours
ISO 14001 Foundation CertificationPeopleCert
16 Hours
ISO 20000 CertificationPeopleCert
24 Hours
ISO 27000 Foundation CertificationAxelos
24 Hours
ITIL 4 Specialist: Create, Deliver and Support TrainingAxelos
24 Hours
ITIL 4 Specialist: Drive Stakeholder Value TrainingAxelos
16 Hours
ITIL 4 Strategist Direct, Plan and Improve TrainingOn-Demand Courses
ITIL 4 Specialist: Create, Deliver and Support ExamTop Resources
ITIL Practice TestData Science
Unlock valuable insights from data with advanced analytics.
View All Data Science Coursesicon-dataBootcamps
Job Oriented
6 Months
Trending
Data Science BootcampJob Oriented
289 Hours
Data Engineer BootcampJob Oriented
6 Months
Data Analyst BootcampJob Oriented
288 Hours
New
AI Engineer BootcampSkills
Data Science with PythonRoles
Data ScientistOn-Demand Courses
Data Analysis Using ExcelTop Resources
Machine Learning TutorialDevOps
Automate and streamline the delivery of products and services.
View All DevOps Coursesicon-terminal-squareCertifications
DevOps Institute
16 Hours
Best Seller
DevOps Foundation CertificationCNCF
32 Hours
New
Certified Kubernetes AdministratorDevops Institute
16 Hours
Devops LeaderSkills
KubernetesRoles
DevOps EngineerOn-Demand Courses
CI/CD with Jenkins XGlobal Accreditations
DevOps InstituteTop Resources
Top DevOps ProjectsBI And Visualization
Understand how to transform data into actionable, measurable insights.
View All BI And Visualization Coursesicon-microscopeBI and Visualization Tools
Certification
24 Hours
Recommended
Tableau CertificationCertification
24 Hours
Data Visualization with Tableau CertificationMicrosoft
24 Hours
Best Seller
Microsoft Power BI CertificationTIBCO
36 Hours
TIBCO Spotfire TrainingCertification
30 Hours
Data Visualization with QlikView CertificationCertification
16 Hours
Sisense BI CertificationOn-Demand Courses
Data Visualization Using Tableau TrainingTop Resources
Python Data Viz LibsCyber Security
Understand how to protect data and systems from threats or disasters.
View All Cyber Security Coursesicon-refresh-cwCertifications
CompTIA
40 Hours
Best Seller
CompTIA Security+EC-Council
40 Hours
Certified Ethical Hacker (CEH v12) CertificationISACA
22 Hours
Certified Information Systems Auditor (CISA) CertificationISACA
40 Hours
Certified Information Security Manager (CISM) Certification(ISC)²
40 Hours
Certified Information Systems Security Professional (CISSP)(ISC)²
40 Hours
Certified Cloud Security Professional (CCSP) Certification16 Hours
Certified Information Privacy Professional - Europe (CIPP-E) CertificationISACA
16 Hours
COBIT5 Foundation16 Hours
Payment Card Industry Security Standards (PCI-DSS) CertificationOn-Demand Courses
CISSPTop Resources
Laptops for IT SecurityWeb Development
Learn to create user-friendly, fast, and dynamic web applications.
View All Web Development Coursesicon-codeBootcamps
Career Kickstarter
6 Months
Best Seller
Full-Stack Developer BootcampJob Oriented
3 Months
Best Seller
UI/UX Design BootcampEnterprise Recommended
6 Months
Java Full Stack Developer BootcampCareer Kickstarter
490+ Hours
Front-End Development BootcampCareer Accelerator
4 Months
Backend Development Bootcamp (Node JS)Skills
ReactOn-Demand Courses
Angular TrainingTop Resources
Top HTML ProjectsBlockchain
Understand how transactions and databases work in blockchain technology.
View All Blockchain Coursesicon-stop-squareBlockchain Certifications
40 Hours
Blockchain Professional Certification32 Hours
Blockchain Solutions Architect Certification32 Hours
Blockchain Security Engineer Certification24 Hours
Blockchain Quality Engineer Certification5+ Hours
Blockchain 101 CertificationOn-Demand Courses
NFT Essentials 101: A Beginner's GuideTop Resources
Blockchain Interview QsProgramming
Learn to code efficiently and design software that solves problems.
View All Programming Coursesicon-codeSkills
Python CertificationInterview Prep
Career Accelerator
3 Months
Software Engineer Interview PrepOn-Demand Courses
Data Structures and Algorithms with JavaScriptTop Resources
Python TutorialProgramming
4.4 Rating 95 Questions 60 mins read14 Readers

Spring Boot is an open source Java-based spring framework, which ease to develop a stand-alone and production ready micro service-based applications:

Spring boot ease and simplify the development of rest full web service and provide a quicker development technique by using the key features provided by spring boot framework.
Spring boot is predominately used to develop the micros services-based application, most of the key features leverage to ease the configuration development and deployment of the microservices architecture.
@Value("${cassandra.password}")
private String password;
@EnableAutoConfiguration
@ComponentScan
There are significant advantages of using spring boot over the JAX-RS which is listed below.
All this advantage makes spring boot is one of best alternative to develop the microservices application, along with one of the key benefits is, to make it compatible to use the other framework like messaging services, hibernate and spring cloud.
Spring boot provides good compatibility with other spring frameworks which is used to provide the security, persistency features. Spring boot provides good support with docker containerization, which makes it a good choice to deploy the microservice based application and easy to maintain.
Spring boot comes with Spring cloud framework, which has many libraries which are used to handle all types of nonfunctional requirements, which is usually not available in other frameworks.
Expect to come across this popular question in Java Spring Boot interview questions.
Spring boot provides many abstraction layers to ease the development, underneath there are vital libraries which work for us.
Below is the key function performing internally.
Considering above there are other internal functions which play a significant role in spring boot.
Spring Boot has been built on top of Spring framework. By using it we can skip writing the boilerplate code like configuring the Database or Messaging Queues, XML configurations, setting build path and maven dependencies. Spring Boot can be assumed as the upgradation of existing Spring functionalities to make it robust and easy to use; that is required for building modern cloud applications.
Spring Boot provides an opinionated view by making certain elementary decisions while developing and running the application. Spring Boot uses sensible defaults, mostly based on the classpath contents. For example, Spring Boot sets up JPA Entity Manager Factory if JPA dependencies are in the classpath. However, it provides us the ability to override the defaults as and when required.
Another important aspect of Spring Boot is embedded servers. Traditionally, with Java web applications we build a WAR or EAR file and deploy them into servers like Tomcat or JBoss etc. Hence, we need to pre-install a web/application server before deploying the WAR/EAR files. Whereas in Spring Boot the web server (Tomcat or Jetty) is part of the application JAR. To deploy applications using embedded servers, it is sufficient if; Java is installed on the server.
Spring Boot is considered as the future of Spring, with most of the cloud-based Microservices being built on it. Most of the upcoming Spring projects are completely integrated with Boot like example Spring Cloud Contracts, Spring Boot Admin, etc. required for cloud application development.
This is a regular feature in Spring Boot questions, be ready to tackle it.
With monolithic application development age, programmers and managers had the comfort of taking ample time for setting up the framework, dependencies and defining all processes. However, in the era of microservices and with the agile development process, the expectation is to build the applications consistent and faster. Spring Boot project aims to solve this problem by providing intelligent defaults and embedded servers.
Spring Boot makes it easy to create standalone, production-grade Microservices applications that we can just run. It provides Starter Projects, which are a set of dependencies that we can include in the application. We get a one-stop-shop for all the Spring and cloud-related technologies like Spring Boot Starter Web for developing a web application or an application to expose restful services, Spring Cloud Config, Spring Actuator, etc.
Inversion of Control (IoC) is a concept or principle where the control flow of a program is inverted i.e. instead of the program, the framework takes control of creating and proving objects as required. Spring IoC is responsible for creating the objects, wiring them as per the configuration and managing the complete lifecycle from creation till destruction.
IoC can be implemented using two techniques namely Dependency Lookup and Dependency Injection.
Dependency Lookup is a traditional approach where a component must acquire a reference to a dependency. It helps in decoupling the components of the application but adds complexity in the form of the additional code that is required to couple these components back together to perform tasks.
This is the reason; Dependency Injection is considered a more viable and popular approach to implement IoC in Spring-based applications.
Dependency Injection (DI) is a pattern that implements Inversion of Control, removing the dependency from the code and instead have the framework or container deal with it. Dependency Injection makes code loosely coupled, which makes the application easy to manage and test.
A typical Java application is composed of several objects that collaborate with each other to execute business logic. Traditionally each object is responsible for obtaining its own reference to the dependent objects. For example, a Service class will depend on the DAO class to get data from the database. Service class would directly create an instance of DAO class by using code like “new DAO()”. This introduces tight coupling between Service and DAO classes. This is where the Spring framework comes into rescue by removing tight coupling between the classes. In the above example, the Spring framework would inject a DAO object into Service class. This also allows us to replace the existing Database with another as and when required with minimal code changes.
Dependency Injection provides dependencies to objects at run time rather than compile time, hence making them loosely coupled. Using this concept programmer does not create objects directly but describes how they should be created. The Code doesn’t need to connect the components and services together but just describe which services are needed by which components. Spring container will then hook them up.
Spring framework provides two mechanisms for dependency injection:
This is frequently asked in Spring Boot tricky interview questions.
Bean is used to refer to any component (POJO class) that is created and managed by Spring’s Dependency Injection container. Ideally, a bean should adhere to the JavaBeans specification, but this is not mandatory, especially when using Constructor-based DI to wire the beans together.
In general, any Spring-managed resource can be referred to as a bean which acts as the backbone of the application. Beans can be defined either by using XML configuration or by using Annotations like @Component, @Service, @Controller, @Repository on top of the class definition.
A class can access beans either by injecting it directly or by injecting a bean that has defined a dependency on this bean.
The application can use beans without worrying about creating or destroying objects.
BeanFactory is responsible for managing components, including their dependencies as well as their life cycles.
Expect to come across this popular question in Spring Boot security interview questions.
Spring boot checks if any class is annotated as @ControllerAdvice and @ExceptionHandler and called from rest end point layer, when any exception occurs than spring boot calls the corresponding annotated class to handle the error message.
The real-time scenario is like, let’s say that most of the exception message is system generated and has a straightforward information, which is sometimes difficult to interpret by the user interface and understand by layman user, to solve this issue spring boot handle the error message and convert into the meaningful and comprehensive message which easy to understand and interpret.
Below code structure represent the ControllerAdvice class developed using spring boot framework to handle the exception.
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.ControllerAdvice;
import org.springframework.web.bind.annotation.ExceptionHandler;
// Need to mention the RestController so that it will behave as a controller class
@ControllerAdvice
public class ProductExceptionController {
// Below method use to handle the exception, which is being generated by the rent //endpoint method. This method also act as a User define exception.
@ExceptionHandler(value = ProductNotfoundException.class)
public ResponseEntity<Object> exception(ProductNotfoundException exception) {
return new ResponseEntity<>("Product not found", HttpStatus.NOT_FOUND);
}
}import java.util.HashMap;
import java.util.Map;
// Below series of import is important package specially org.springframework package
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.RestController;
import com.tutorialspoint.demo.exception.ProductNotfoundException;
import com.tutorialspoint.demo.model.Product;
// This class represents how to call the exception handler class which is mention above.
@RestController
public class ProductServiceController {
private static Map<String, Product> productRepo = new HashMap<>();
static {
Product honey = new Product();
honey.setId("1");
honey.setName("Honey");
productRepo.put(honey.getId(), honey);
Product almond = new Product();
almond.setId("2");
almond.setName("Almond");
productRepo.put(almond.getId(), almond);
}
// Below rest end points method throwing the exception if id is not found in databases, //so rather than call the runtime exception its calling the handler class, to catch the //exception and generate the appropriate message
@RequestMapping(value = "/products/{id}", method = RequestMethod.PUT)
public ResponseEntity<Object> updateProduct(@PathVariable("id") String id, @RequestBody Product product) {
if(!productRepo.containsKey(id))
throw new ProductNotfoundException();
productRepo.remove(id);
product.setId(id);
productRepo.put(id, product);
return new ResponseEntity<>("Product is updated successfully", HttpStatus.OK);
}
}Swagger is a specification and framework implementation for producing a visual representation of RESTful Web Services API. With the help of Swagger, the API consumer can understand and interact with the remote service with a minimal amount of implementation logic. One can compare it to the blueprint of a house.
It creates a contract for the RESTful API, detailing all of its resources and operations in a human and machine-readable format. It allows the documentation to be placed at the same project as the server allowing easy development, discovery, and integration of the application.
It is typically defined in a YAML file, which makes it easy to comprehend both by developers, API clients, and business users, etc. Swagger can be integrated with Gradle for enabling code generation feature, which is used for generating REST controllers and domain classes (POJO) for the application. This helps in maintaining the API definition and code always in sync.
A profile is a feature of Spring framework that allows us to map the beans and components to certain profiles. A profile can be assumed to be a group or an environment like dev, test, prod, etc.; that needs a certain kind of behavior and/or requires to maintain distinct functionalities across the profiles. So, when the application is running with ‘dev’ (Development) profile only certain beans can be loaded and when in ‘prod’ (Production) certain other beans can be loaded.
In Spring Boot we use @Profile annotation to map bean to a particular profile by taking the names of one (or multiple) profiles.
Let’s say we have a Component class that is used to record and mock the REST requests and responses. However, we want to activate this component only in dev profile and disable in all other profiles. We annotate the bean with “dev” profile so that it will only be present in the container during development.
@Component
@Profile("dev")
public class DevMockUtilityProfiles are activated using application.yml in the Spring project:
spring.profiles.active=dev
To set profiles programmatically, we can also use the SpringApplication class:
SpringApplication.setAdditionalProfiles("dev");Hibernate is a JPA (Java Persistence API) implementation providing ORM (Object-relational mapping) for mapping, storing, updating and retrieving application data from relational databases to Java objects and vice versa. Hibernate maps Java classes to database tables and from Java data types to SQL data types, hence programmer is relieved from writing traditional data persistence programs like SQL.
Whereas Spring Data JPA is a JPA Data Access Abstraction used to significantly reduce the amount of boilerplate code required to implement data access layers for various persistence stores. With Spring Data, we still need to use Hibernate, Eclipse Link, or any other JPA provider. One of the key benefits is that we can control transaction boundaries with the use of @Transactional annotation.
One of the most frequently posed Spring Boot interview questions for experienced, be ready for it.