Realize different classification and regression techniques.
Understand the concept of clustering and how to use it to automatically segment data
Learn the basics of text processing in Python
Understand the basics of heuristic search and genetic programming, develop AI games
Discover how to build intelligent applications centered on images, text, and time series data.
See how to use deep learning algorithms and build applications based on it
Learn how reinforcement learning creates an environment
Learn to detect objects and extract feature to implement operations in real-time
Our instructors are industry experts and deliver hands-on learning. Make the best of the learning from experts across domains.
Our courseware is always current and updated with the latest tech advancements. Stay globally relevant and empower yourself with the training.
Learn theory backed by practical case studies, exercises and coding practice. Get skills and knowledge that can be effectively applied.
Learn from the best in the field. Our mentors are all experienced professionals in the fields they teach.
Learn concepts from scratch, and advance your learning through step-by-step guidance on tools and techniques.
Get reviews and feedback on your final projects from professional developers.
Learning Objectives:
Learn how to build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you. Develop expertise in popular AI & ML technologies and problem-solving methodologies. Also develop the ability to independently solve business problems using Artificial Intelligence & Machine Learning.
Topics Covered:
Hands-on:
Learning Objectives:
Learn about supervised learning techniques - regression and classification. Also understand various techniques to build Decision Trees.
Topics Covered:
Hands-on:
This dataset classifies people described by a set of attributes as good or bad credit risks. Using classification techniques, build a model to predict good or bad customers to help the bank decide on granting loans to its customers
Learning Objectives:
Learn about unsupervised learning technique - K-Means Clustering and Hierarchical Clustering. Also understand the Elbow method and Silhouette method.
Topics Covered:
Hands-on:
In marketing, if you’re trying to talk to everybody, you’re not reaching anybody.. This dataset has social posts of teen students. Based on this data, use K-Means clustering to group teen students into segments for targeted marketing campaigns.
Learning Objectives:
Learn about bootstrap sampling and its advantages followed by bagging. Boost model performance with Boosting. Through a real-life case study, learn Random Forest and how it helps avoid overfitting compared to decision trees.
Topics Covered:
Hands-on:
In statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. In this case study, use AdaBoost, GBM & Random Forest on Lending Data to predict loan status. Ensemble the output and see your result perform better than a single model.
Learning Objectives:
Understand the basics of RL and its applications in AI. Get an understanding of Markov Decision Processes: Model processes as Markov chains, and learn algorithms for solving optimisation problems. Write Q-learning algorithms to solve complex RL problems.
Topics Covered:
Hands-on: No hands-on
Learning Objectives:
Learn advanced machine learning techniques using the Neural Networks algorithms. Neural Networks can enable pattern recognition based on a large amount of inputs. Learn how NN algorithms work, and end up with an introduction to deep learning.
This module covers various activation functions like sigmoid, hyperbolic-tangent, Rectified Linear Units, Leaky Rectified Linear Units.
Topics Covered:
Hands-on:
A research study was aimed at the case of customers’ default payments in Taiwan. From the perspective of risk management, the result of predictive accuracy of the estimated probability of default will be more valuable than the binary result of classification - credible or not credible clients.
Learning Objectives:
Get started with the Natural language toolkit, and learn the basics of text processing in Python. Learn how to extract features from unstructured text and build machine learning models on text data. Conduct sentiment analysis, learn to parse English sentences and extract meaning from them. Explore the applications of text analytics in new areas and various business domains.
Topics Covered:
Hands-on:
Stock market prediction has been an interesting research topic for many years. Finding an efficient and effective means of studying the market perceptions found its way in different social networking platforms such as Twitter. With proper tools and the help of technology, meaningful and precious information can be gathered, analyzed, and utilized in different areas like in the movement and performance of the stock market.
Learning Objectives:
Learn to use the power of computer vision and play with what you see, detect faces, eyes and other attributes using Haar cascades.
Topics Covered:
Hands-on:
While we drive on a highway, we tend to feel sleepy. In this project, using OpenCV and implementing object detection and feature extraction we detect fatigue in real-time and report an alarm which will not only keep a driver attentive while driving but also reduce the number of accidents.
Learning Objectives:
Learn the AI search technique that employs heuristic for its moves. Understand the fundamental concepts of genetic algorithms and visualize the evolution.
Topics Covered:
Hands-on:
Use cutting edge AI techniques to teach a computer to play a computer game.
This dataset classifies people described by a set of attributes as good or bad credit risks. Using classification techniques, build a model to predict good or bad customers to help the bank decide on granting
Stock market prediction has been an interesting research topic for many years. Finding an efficient and effective means of studying the market perceptions is important in different social networking platforms such as Twitter. With proper tools and the help of technology, meaningful and precious information can be gathered, analyzed, and utilized in different areas like in the movement and performance of the stock market.
While we drive on a highway, we tend to feel sleepy. In this project, using OpenCV and implementing object detection and feature extraction we detect fatigue in real-time and report an alarm which will not only keep a driver attentive while driving but also reduce number of accidents.
Artificial intelligence is the technology of making our systems more intelligent and providing solutions to problems. AI is the hottest career in this digital age and AI experts certainly earn the big bucks. According to Neuvoo, the average salary for Artificial Intelligence related jobs is $73,552 per year or $38 per hour. This is around 2.5 times more than the average salary in America. This course will help you understand the core concepts of AI and use it to build intelligent solutions. You will also get in-depth prep help to clear interviews and land jobs.
On completing this course you will:
By the end of this course, you will gain
Tools and Technologies used for this course are
There are no restrictions but participants would benefit if they have sound knowledge in Python and familiarity with Data Science.
Yes, KnowledgeHut offers this training online.
On successful completion of the course you will receive a course completion certificate issued by KnowledgeHut.
Your instructors are AI experts who have years of industry experience.
Any registration canceled within 48 hours of the initial registration will be refunded in FULL (please note that all cancellations will incur a 5% deduction in the refunded amount due to transactional costs applicable while refunding) Refunds will be processed within 30 days of receipt of a written request for refund. Kindly go through our Refund Policy for more details.
KnowledgeHut offers a 100% money back guarantee if the candidate withdraws from the course right after the first session. To learn more about the 100% refund policy, visit our Refund Policy.
KnowledgeHut's Agile Master's Program was a transformative journey for me. The comprehensive training modules equipped me with advanced Agile skills, opening up new career opportunities. The certifications boosted my professional recognition. Highly recommended!
The Azure data engineering course is excellent! Clear explanations and practical projects make learning enjoyable and applicable in real-world scenarios, the progression was very logical.
Investing in KnowledgeHut's Agile Excellence Master's Program was a game-changer for me. The program enhanced my skills and boosted my earning potential. The globally recognized certifications added credibility to my profile. I'm grateful for this transformative experience.